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Abstract
A consideration of the lack of history dependence in the non-equilibrium
steady state of a quantum system leads us to conjecture that in such a system
there is a set of quantum mechanical observables whose retarded response
functions are insensitive to the arrow of time, and which consequently satisfy a
quantum analogue of the Onsager reciprocity relations. Systems which satisfy
this conjecture can be described by an effective free energy functional. We
demonstrate that the conjecture holds in a resonant level model of a multi-lead
quantum dot.

Although the fundamental principles of thermal equilibrium were established by Boltzmann
more than a century ago, their generalization to the non-equilibrium steady state has proved
elusive. The non-equilibrium steady state is thought to be defined by a set of characteristic
variables such as the current and the thermal and chemical potential gradients, and as such
it is expected to be independent of the history of how it was prepared. This has led to
the notion that general principles should govern the instantaneous properties of the steady
state. One recurring idea is that a generalized free energy functional might apply to the
non-equilibrium steady state [1–6]. This was first speculated by Rayleigh in the late 19th
century [1]. Onsager [2, 3] later used his reciprocity relations to support this conjecture, but
the idea has remained controversial to the present day.

Non-equilibrium steady state behaviour plays an important role in electronic transport
theory, and becomes particularly important in driven nano-devices, such as a DC biased
quantum dot [7]. Variants on Rayleigh’s approach would be invaluable in this new context,
and might provide an important first step along the road to Boltzmann’s approach the non-
equilibrium steady state [4–6].

Recent work on non-equilibrium hydrodynamics has shown how Onsager’s reciprocity
relations can be generalized to the non-equilibrium steady state [8, 9]. This motivates us to
re-examine Onsager’s reciprocity relations in the context of non-equilibrium quantum physics.
By considering the history independence of the non-equilibrium steady state, we are led to
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Figure 1. Two variations in the path P where the increments in λ j at times t2 and t1 > t2 are
interchanged.

conjecture that Onsager’s reciprocity theorem continues within a limited class of quantum
variables, in the non-equilibrium steady state. Within this restricted class of variables, the
concept of a free energy can be used to describe the steady state of non-equilibrium quantum
systems.

The lack of history dependence of the equilibrium steady state means that the work done
on the system by coupling various internal degrees of freedom Âi (i = 1, n) to corresponding
external ‘forces’ λi (t),

W =
∑

i

∫
P
〈Ai(t)〉 dλi (t),

does not depend on the path P over which the λi are adiabatically incremented to their final
value. If we increment λ j (t) at two different times t2 and t1 > t2, we may do it two ways,
illustrated in figure 1.

In the first variation λi (t1) → λi (t1) + δλi and λ j(t2) → λ j (t2) + δ̃λ j , whereas in the
second the variations are reversed, δλ j ↔ δ̃λ j . The second-order change in the work done
along both paths must be equal, i.e.

δ2W = δλi δ̃λ j

(
δ〈Ai (t1)〉
δλ j (t2)

)
= δλi δ̃λ j

(
δ〈A j (t1)〉
δλi (t2)

)
(1)

from which if follows that
δ〈A j (t1)〉
δλi (t2)

− δ〈Ai (t1)〉
δλ j (t2)

= 0. (2)

We can relate these functional derivatives to the corresponding response functions,

δ〈A j (t)〉
δλi (t ′)

= −i〈[A j(t), Ai (t
′)]〉θ(t − t ′) (3)

from which it follows that

− i〈[A j (1), Ai(2)]〉θ(1 − 2) = −i〈[Ai (1), A j(2)]〉θ(1 − 2). (4)

These are the quantum generalization of Onsager’s reciprocity relations [2, 3]. The relations
are understood to hold only in the long-time limit corresponding to a slow adiabatic variation
of the source terms. Onsager identified relations with the microscopic reversibility of the
equations of motion and the absence of any ‘arrow of time’ in thermal equilibrium. This
derivation shows how reciprocity is directly related to a lack of history dependence. Since
our proof makes no reference to thermal equilibrium, it offers the intriguing prospect of an
extension to the non-equilibrium steady state.

To extend the discussion away from thermal equilibrium, we consider a tiny system ‘S’,
which may be a quantum dot [7, 10, 11], a quantum wire [12], or another small system that is
coupled to two very large baths of electrons (‘leads’) at different chemical potentials µL and
µR where µL > µR. The entire coupled system is completely isolated from the outside world.

If we connect S to the leads at time t = 0, then after an equilibration time τ1 the system
will arrive at a steady state where a current flows from the left- to the right-hand lead (figure 2).
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Figure 2. The non-equilibrium steady state is obtained by adiabatically connecting system S to
two heat baths at chemical potentials µL,R.

This state persists for a long time τ2(L) until a substantial fraction of the additional electrons
on the left-hand lead have flowed into the right-hand lead. The time τ2(L) will diverge rapidly
as L → ∞, which permits us to define the steady state value of some variable Â as

〈A〉 = lim
L→∞

〈A(t)〉
with the understanding that τ2(L) � t � τ1.

Suppose the steady state is arrived at by adiabatically turning on an interaction HI = ghI

between the leads, and by coupling source terms λ j to various quantities A j which are localized
within S. Since the combined system is closed, when we adiabatically change these variables
the amount of work done in reaching the steady state is simply the change in the total energy
of the system

WN E =
∫

〈hI(t)〉 dg(t) + 〈Ai(t)〉 dλi .

If the work done WN E is independent of the path by which g and the λ j reach their final values,
then we can use the previous proof to show that the corresponding variables satisfy a quantum
reciprocity relation. The converse will also hold true. This motivates the ‘quantum reciprocity
conjecture’.

In the non equilibrium steady state, the set of quantum mechanical observables
contains a non-trivial subset P of ‘protected’ quantum observables P =
{a1, a2, . . . , an} whose correlation functions in the steady state are insensitive to
the arrow of time, and which consequently satisfy a quantum mechanical analogue
of the Onsager reciprocity relations

〈[a(1), b(2)]〉 = 〈[b(1), a(2)]〉, (a, b ∈ P).

Of course we do not expect the reciprocity relation to extend to all variables, as it does in
thermal equilibrium, because this would mean that the arrow of time is completely invisible.

Consider the retarded and advanced Green functions between protected variables,

G(R,A)
ab = ∓i〈[a(1), b(2)]〉θ±(t2 − t1) (5)

where θ±(t) = θ(±t). Since a and b are Hermitian, these are real functions (G R,A(t) =
[G R,A(t)]∗). The conjectured Onsager relations mean that in the steady state they also satisfy

G R
ab(t2 − t1) = G A

ab(t1 − t2),

G(R,A)
ab (t2 − t1) = G(R,A)

ba (t2 − t1),
(6)

where the order of the subscripts and time variables is important. If we write G R(t1 − t2) =[
G R(t1 − t2)

]∗
in the first relation, and then Fourier transform, we obtain the more familiar

result

G A
ab(ω) = G R

ab(ω)
∗
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Figure 3. Two paths for turning on the interaction and source terms.

which means that the retarded and advanced Green functions of protected variables share the
same spectral decomposition

G(R,A)
ab (ω) =

∫
dE

π

1

ω − E ± iδ
Aab(E)

where Aab(E) = ± Im[G(A,R)
ab (E)].

Provided that the set of protected quantum variables includes the interaction HI = ghI,
then we can define an effective free energy from the virtual work done WN E in reaching the
steady state. Suppose we evaluate WN E along the two paths shown in figure 3. Since WN E is
the same along both paths, for small �λ we have

A(g1, λ)�λ +
∫ g2

g1

dg′

g′ HI(g
′, λ +�λ) dg′ = A(g2, λ)�λ +

∫ g2

g1

dg′

g′ HI(g
′, λ) dg′, (7)

so that

�A = A(g2, λ)− A(g1, λ) = ∂

∂λ
�F (8)

where

�F =
∫ g2

g1

dg′

g′ HI(g
′, λ). (9)

Thus if reciprocity holds, the change in the variables {A j} associated with a change in the
coupling constant g can be evaluated as derivatives of a single free energy variable�F .

We now illustrate the correctness of this conjecture in a simple non-interacting model. We
consider a single resonant level in a quantum dot carrying a DC current between two or more
leads, where the Hamiltonian H = H0 + HI and

H0 =
∑
α,kσ

ε(k)c†
α,kσ cα,kσ +

∑
σ

εdσd†
σdσ ,

HI = J
∑
α,k

[
γαc†

α,kσdσ + H.c.
]
.

Here α = 1, N labels the leads, each one characterized by a distinct chemical potential µα ,
εdσ = εd − σ B is the energy of the localized state in the dot in a magnetic field B , J is the
overall coupling constant and γα is a parameter which sets the relative strength of hybridization
with the α lead. This is an exactly solvable problem, and has well known results [13] found
by the Keldysh method.

As a first step, by comparing the retarded and advanced correlation functions, we are able
to explicitly confirm that the interaction, together with the dot magnetization M and occupancy
nd, form a set of protected variables {HI,M, nd} which satisfy reciprocity and for which a free
energy functional can be defined.
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Figure 4. Distribution function of nd as a function of εd. µ1 = 1,µ2 = −1, λ1 = 0.75, λ2 = 0.25,
� = 0.01 and T = 0.001.

For example, to confirm the relation

〈[HI(t1), n(t2)]〉 = 〈[n(t1), HI(t2)]〉, (10)

we compare the retarded and advanced Green functions:

G R
HIn
(ω) = Tr

∑
α

Jγα

∫
dε

2π

[Gdd†(ε)(iτ1)Gcαd†(ε + ω) + Gdc†
α
(ε)(iτ1)Gdd†(ε + ω)

]
(11)

and

G A
HIn(ω) = Tr

∑
α

Jγα

∫
dε

2π

[Gcαd†(ε + ω)(iτ1)Gdd†(ε) + Gdd†(ε + ω)(iτ1)Gdc†
α
(ε)

]
(12)

where the Gab refer to the Larkin–Ovchinikov matrix Green function [14, 15] between electron
fields a and b and the trace is over Keldysh indices. By writing these expressions out
explicitly, we are able to explicitly confirm that they are related by complex conjugation,
G R

HIn
(ω) = [G A

HIn
(ω)]∗, from which reciprocity between nd and HI holds. A similar method

enables us to check that

〈[HI(t1),M(t2)]〉 = 〈[M(t1), HI(t2)]〉. (13)

The correlation function between M and nd identically vanishes, trivially satisfying reciprocity.
We now confirm that an effective free energy correctly determines the occupancies and

magnetization. The expectation value of the interaction energy is determined by the equal time
Keldysh Green functions between the conduction and dot electron, given by

〈HI〉 = J
∑
α,σ

γα

∫
dω

4π i

[
GK

dσ c†
α
(ω) + GK

cαd†
σ
(ω)

]
.

After integrating over the coupling constant we obtain

�Feff =
∫ J

0

d J ′

J ′ 〈HI〉 =
∑
α,σ

2γ 2
α

π
Re

[
−2πT log

(
1

2
+
εdσ + i�− µα

2π iT

)

+ 2πT log

(
1

2
+
εdσ − µα

2π iT

)
+� ln

(
D

2πT

)]
, (14)

where � = ∑
α πρ(Jγα)

2. The expectation values of local state occupancy nd and
magnetization M are then

〈nd〉 = ∂�Feff

∂εd
+ c1,

〈M〉 = −∂�Feff

∂B
+ c2,

(15)



L268 Letter to the Editor

where the constant terms give the limiting value of the occupancy and magnetization when
J → 0. We can fix these constants by using the condition that 〈nd〉 → 1 and 〈M〉 → 0 as
� → ∞, which gives

〈nd〉 = 1 +
∑
α,σ

γ 2
α

π
Im

[
ψ

(
1

2
+
εdσ − µα + i�

2π iT

)]
,

〈M〉 =
∑
α,σ

γ 2
α

π
σ Im

[
ψ

(
1

2
+
εd + σ B − µα + i�

2iπT

)]
.

(16)

Both results can be independently confirmed by direct calculation from the Keldysh Green
functions. It is remarkable that the derivative of a single free energy functional reproduces the
results of two separate Keldysh calculations, even though a DC current is flowing through
the dot. It is interesting to see that, even at the zero-coupling limit, the occupancy and
magnetization of the ‘dot’ have a non-thermalized form, and depend on the ratios between
hybridization γα. The non-thermal function nd(εd) (figure 4) is reminiscent of the occupancy
observed in quantum wire experiments [12]. Here the parameters λi play the similar role of
distances between the measured point and leads in the experiment.

It is instructive to examine the magnetization in the two-lead case which for zero
temperature is

χ(B,�) = 2�(B2 +�2 + V 2)

π((B − V )2 +�2)((B + V )2 +�2)
(17)

whilst for � → 0,

χ(B, T ) = 1

4T

[
sech2

(
B + V

2T

)
+ sech2

(
B − V

2T

)]
. (18)

In both limits, the bias voltage dramatically reduces the susceptibility and at a finite voltage
the T = 0 magnetic susceptibility in the limit of J → 0 is always zero. Non-thermal
magnetizations of this kind have recently been obtained in the zeroth order magnetic
susceptibility calculation for quantum dot [16–18]. Can we extend the set of ‘protected’
variables to include other quantities of interest, such as the current or the spin current? The
answer appears to be ‘no’. When we directly compare the retarded and advanced correlators
involving any operator that involves the lead electrons, other than HI, we find that they are not
complex conjugates. This means that we cannot change the ratio of the couplings γα as we
turn on the interaction, for to do this would be to introduce new variables which do not satisfy
the Onsager reciprocity relation with hI.

The validity of our conjecture in more complex systems is an open issue. We cannot
prove that reciprocity is stable against the presence of interactions within the dot, but we
have circumstantial support for this idea. The above methods can be used in the large-N
limit of the infinite-U Anderson model to examine how the mean-field equations evolve away
from equilibrium. We have also compared the local susceptibility in the non-equilibrium
Kondo problem obtained using the reciprocity conjecture with that obtained using Majorana
techniques [19]. An interesting recurring feature of these calculations is the appearance of
non-thermal distribution functions in the limit that the coupling with the leads is taken to zero.
In interacting systems, these limiting distribution functions will need to be computed self-
consistently from the limiting form of the Dyson equation, before the change in free energy
can be computed [20]1.

1 The results of Coleman and Mao [20] did not take this fact into account and are therefore incorrect. A revised
calculation to support the idea that the Kondo effect flows to strong coupling at large voltages will shortly be posted.
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In conclusion, we have examined the idea that the principle of virtual work can be
extended to the non-equilibrium steady state of quantum systems. This has led us to conjecture
the existence of a class of steady state variables which satisfy the quantum generalization
of Onsager’s reciprocity relation out of equilibrium. If the interaction component of the
Hamiltonian belongs to the conjectured set of protected variables, then the notion of a free
energy can be extended to the quantum non-equilibrium steady state,permitting the expectation
values of steady state variables to be computed as derivatives of a free energy functional. This
idea works for the simplest possible example, and leaves open the possibility that it will apply
to more complex and interesting interacting situations.

We wish to thank Chris Hooley, David Langreth, Joel Lebowitz and Olivier Parcollet, for the
many lively discussions at the Rutgers Center for Materials Theory that led to this paper. This
work was supported by DOE grant DE-FG02-00ER45790.
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